Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 20(10): 1384-1394, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825719

RESUMO

The complex behaviors underlying reward seeking and consumption are integral to organism survival. The hypothalamus and mesolimbic dopamine system are key mediators of these behaviors, yet regulation of appetitive and consummatory behaviors outside of these regions is poorly understood. The central nucleus of the amygdala (CeA) has been implicated in feeding and reward, but the neurons and circuit mechanisms that positively regulate these behaviors remain unclear. Here, we defined the neuronal mechanisms by which CeA neurons promote food consumption. Using in vivo activity manipulations and Ca2+ imaging in mice, we found that GABAergic serotonin receptor 2a (Htr2a)-expressing CeA neurons modulate food consumption, promote positive reinforcement and are active in vivo during eating. We demonstrated electrophysiologically, anatomically and behaviorally that intra-CeA and long-range circuit mechanisms underlie these behaviors. Finally, we showed that CeAHtr2a neurons receive inputs from feeding-relevant brain regions. Our results illustrate how defined CeA neural circuits positively regulate food consumption.


Assuntos
Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/fisiologia , Reforço Psicológico , Animais , Condicionamento Operante/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Receptor 5-HT2C de Serotonina/metabolismo , Esquema de Reforço
2.
J Physiol ; 595(16): 5653-5669, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28594440

RESUMO

KEY POINTS: Dendritic and spine calcium imaging in combination with electrophysiology in acute slices revealed that in medial intercalated cells of the amygdala: Action potentials back-propagate into the dendritic tree, but due to the presence of voltage-dependent potassium channels, probably Kv4.2 channels, attenuate over distance. A mixed population of AMPA receptors with rectifying and linear I-V relations are present at individual spines of a single neuron. Decay kinetics and pharmacology suggest tri-heteromeric NMDA receptors at basolateral-intercalated cell synapses. NMDA receptors are the main contributors to spine calcium entry in response to synaptic stimulation. Calcium signals in response to low- and high-frequency stimulation, and in combination with spontaneous action potentials are locally restricted to the vicinity of active spines. Together, these data show that calcium signalling in these GABAergic neurons is tightly controlled and acts as a local signal. ABSTRACT: The amygdala plays a central role in fear conditioning and extinction. The medial intercalated (mITC) neurons are GABAergic cell clusters interspaced between the basolateral (BLA) and central amygdala (CeA). These neurons are thought to play a key role in fear and extinction, controlling the output of the CeA by feed-forward inhibition. BLA to mITC cell inputs are thought to undergo synaptic plasticity, a mechanism underlying learning, which is mediated by NMDA receptor-dependent mechanisms that require changes in cytosolic calcium. Here, we studied the electrical and calcium signalling properties of mITC neurons in GAD67-eGFP mice using whole-cell patch clamp recordings and two-photon calcium imaging. We show that action potentials back-propagate (bAP) into dendrites, and evoke calcium transients in both the shaft and the dendritic spine. However, bAP-mediated calcium rises in the dendrites attenuate with distance due to shunting by voltage-gated potassium channels. Glutamatergic inputs make dual component synapses on spines. At these synapses, postsynaptic AMPA receptors can have linear or rectifying I-V relationships, indicating that some synapses express GluA2-lacking AMPA receptors. Synaptic NMDA receptors had intermediate decay kinetics, and were only partly blocked by GuN2B selective blockers, indicating these receptors are GluN1/GluN2A/GluN2B trimers. Low- or high-frequency synaptic stimulation raised spine calcium, mediated by calcium influx via NMDA receptors, was locally restricted and did not invade neighbouring spines. Our results show that in mITC neurons, postsynaptic calcium is tightly controlled, and acts as a local signal.


Assuntos
Tonsila do Cerebelo/fisiologia , Sinalização do Cálcio/fisiologia , Dendritos/fisiologia , Potenciais de Ação , Animais , Feminino , Técnicas In Vitro , Masculino , Camundongos Transgênicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
3.
Cell Rep ; 10(9): 1435-1442, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753409

RESUMO

The basolateral amygdala (BLA) and prefrontal cortex (PFC) are partners in fear learning and extinction. Intercalated (ITC) cells are inhibitory neurons that surround the BLA. Lateral ITC (lITC) neurons provide feed-forward inhibition to BLA principal neurons, whereas medial ITC (mITC) neurons form an inhibitory interface between the BLA and central amygdala (CeA). Notably, infralimbic prefrontal (IL) input to mITC neurons is thought to play a key role in fear extinction. Here, using targeted optogenetic stimulation, we show that lITC neurons receive auditory input from cortical and thalamic regions. IL inputs innervate principal neurons in the BLA but not mITC neurons. These results suggest that (1) these neurons may play a more central role in fear learning as both lITCs and mITCs receive auditory input and that (2) mITC neurons cannot be driven directly by the IL, and their role in fear extinction is likely mediated via the BLA.

4.
Sci China Life Sci ; 57(4): 384-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24643418

RESUMO

The perception of pain involves the activation of the spinal pathway as well as the supra-spinal pathway, which targets brain regions involved in affective and cognitive processes. Pain and emotions have the capacity to influence each other reciprocally; negative emotions, such as depression and anxiety, increase the risk for chronic pain, which may lead to anxiety and depression. The amygdala is a key-player in the expression of emotions, receives direct nociceptive information from the parabrachial nucleus, and is densely innervated by noradrenergic brain centers. In recent years, the amygdala has attracted increasing interest for its role in pain perception and modulation. In this review, we will give a short overview of structures involved in the pain pathway, zoom in to afferent and efferent connections to and from the amygdala, with emphasis on the direct parabrachio-amygdaloid pathway and discuss the evidence for amygdala's role in pain processing and modulation. In addition to the involvement of the amygdala in negative emotions during the perception of pain, this brain structure is also a target site for many neuromodulators to regulate the perception of pain. We will end this article with a short review on the effects of noradrenaline and its role in hypoalgesia and analgesia.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Norepinefrina/química , Dor/fisiopatologia , Dor/psicologia , Analgesia , Animais , Ansiedade/fisiopatologia , Depressão/fisiopatologia , Emoções , Humanos , Nociceptividade , Norepinefrina/fisiologia , Percepção da Dor
5.
J Physiol ; 591(10): 2381-91, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23420655

RESUMO

Fear conditioning and fear extinction are Pavlovian conditioning paradigms extensively used to study the mechanisms that underlie learning and memory formation. The neural circuits that mediate this learning are evolutionarily conserved, and seen in virtually all species from flies to humans. In mammals, the amygdala and medial prefrontal cortex are two structures that play a key role in the acquisition, consolidation and retrieval of fear memory, as well extinction of fear. These two regions have extensive bidirectional connections, and in recent years, the neural circuits that mediate fear learning and fear extinction are beginning to be elucidated. In this review, we provide an overview of our current understanding of the neural architecture within the amygdala and medial prefrontal cortex. We describe how sensory information is processed in these two structures and the neural circuits between them thought to mediate different aspects of fear learning. Finally, we discuss how changes in circuits within these structures may mediate fear responses following fear conditioning and extinction.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Extinção Psicológica , Humanos
6.
J Biomed Biotechnol ; 2011: 386862, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21234422

RESUMO

The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Sondas de DNA/metabolismo , Hibridização in Situ Fluorescente/métodos , Sorghum/genética , Zea mays/genética , Southern Blotting , Eletroforese em Gel de Ágar , Etídio/metabolismo , Loci Gênicos/genética , Marcadores Genéticos , Genoma de Planta/genética , Mapeamento Físico do Cromossomo , Plantas Geneticamente Modificadas , Polimorfismo de Fragmento de Restrição/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...